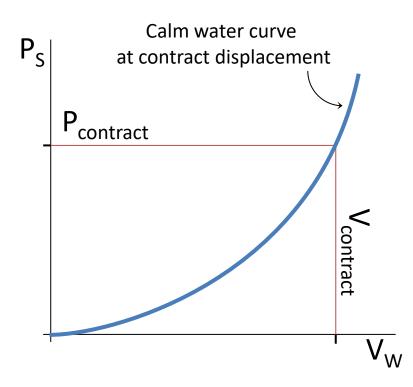


STA-2

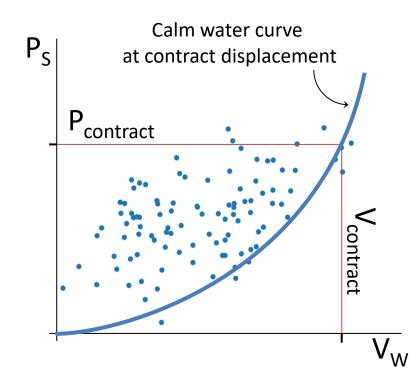
Joint Industry Project

Content


- Background
- Overview of present-day status
- Proposed project scope
- Project costs and fee
- JIP process

Background: full-scale ship performance

 Speed/power contract trials using reciprocal runs



Background: full-scale ship performance

- Speed/power contract trials using reciprocal runs
- In-service data, relying on speed log for STW

Background: S/P trial standards

•	Taniguc	hi-	Tamura	1966
---	---------	-----	---------------	------

• BSRA 1964, 1978

Jinnaka 1982

• SNAME 1989

Schmiechen 1991

Kracht 1999

• ISO15016 2002

• ITTC ...,2005

Background: S/P trial standards

 Taniguchi-Tamur 	a 1966
-------------------------------------	--------

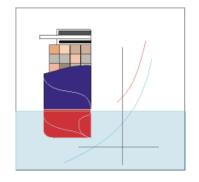
- BSRA 1964, 1978
- Jinnaka 1982
- SNAME 1989
- Schmiechen 1991
- Kracht 1999
- ISO15016 2002
- ITTC ...,2005

Sea trial performance was not observed in-service...

Background: S/P trial standards

•	Taniguc	hi-Tai	mura	1966

- BSRA 1964, 1978
- Jinnaka 1982
- SNAME 1989
- Schmiechen 1991
- Kracht 1999
- ISO15016 2002
- ITTC ...,2005



Sea trial performance was not observed in-service...

- JIP 2004-2006
- 34 participants

Delivered:

- Improved methods for trial conduct
- Improved methods for trial analysis
- Validation cases
- STAIMO software **STAIMO**

Achieved:

Resulted in clear, pragmatic and transparent guidelines for the reliable speed/power assessment of ships worldwide

Impact:

- 2012: ITTC recommended procedures
- IMO adaptation
- ISO15016:2015, now <u>the</u> standard for contracts

Impact:

- 2012: ITTC recommended procedures
- IMO adaptation
- ISO15016:2015, now <u>the</u> standard for contracts

Present-day status

- Work on S/P trial methods continued in
 - ITTC committees on full scale ship performance
 - ISO WG17

30th ITTC - FSSPC

MARIN

Full Scale Ship Performance Committee (FSSPC)

Chairman:

1- Hideo Orihara,

JMUC, Japan

Secretary:

2- Sebastian Bielicki,

CTO, Poland

Members:

3- Se-Myun Oh,

4- Gongzhen Xin,

5- Gijs Struijk,

6- Giuliano Vernengo,

7- Stephen Minnich,

8- Peiyuan Feng,

9- Mariko Kuroda,

10- Min Woo Kim,

Observer:

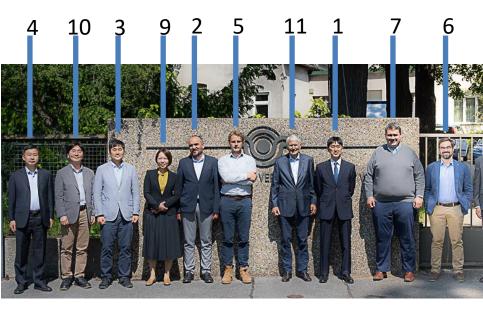
11- Prof. Gerhard Strasser,

SHI, Korea

CSSRC, China

MARIN, NL

U. Genova, Italy


NSWCCD, USA MARIC, China

NNADL Janen

NMRI, Japan

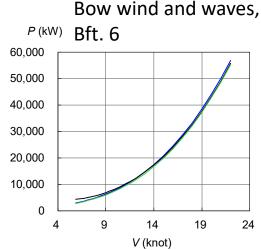
HHI, Korea

SVA, Austria

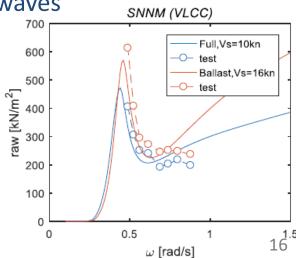
- Review of new measurement techniques: wave radar, wind LiDAR, thrust, ...
- Roughness effects
- Fouling effects
- Shallow water corrections
- Yaw & rudder angle corrections
- Wave corrections
- Wind corrections

- Review of new measurement techniques: wave radar, wind LiDAR, thrust, ...
 - Wave radar (& buoys) superior to gauging by eye,
 but not often applied
 - Wind LiDAR best technique for obtaining undisturbed wind
 - Thrust measurements still proven difficult (strain guage, distance sensors)

- Roughness effects
 - Need for definition of roughness (height, length, nonuniformity, height in relation to viscous sublayer)
 - No reliable correction method
- Fouling effects
 - Difficult to define different types (how to quantify/measure a slime layer?)
 - No reliable correction method



- 'New' Raven method currently implemented in latest ITTC & new ISO a stark improvement over previous Lackenby method.
- Still exists a need for more validation, but has proven difficult to organize...
- Yaw & rudder angle corrections
 - In trial situations (around design speeds, into dominant weather), influence is limited.
 - No correction needed for trials


Difference depending on the estimation of resistance due to drifting and its effects on power curves

- Wave corrections
 - Review of different present-day methods (STAWAVE-1&2, SPAWAVE, SNNM, NMRI, simple-NMRI)
 - Discrepancies, mainly in short-wave period range (relevant for most trials!)
 - More work needed to improve methods in short waves

- Discussion on wind averaging method (WAM) increases uncertainty in changing wind conditions.
- Discussion on CFD pre-scan method to find best anemometer position.
- More ship types needed in database of wind coefficients (STAWIND/ITTC)

ISO WG17: updating ISO15016

MARIN

- Will be published end of 2024
- Main changes: wind, waves, shallow water
- STAIMO v3.0 to be released to reflect changes

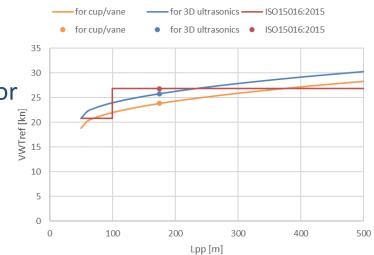
ISO/TC 8/SC 6/WG 17 N 192

ISO/TC 8/SC 6/WG 17 "Speed trial data analysis"


Convenorship: JISC

Convenor: Takagi Ken Mr.

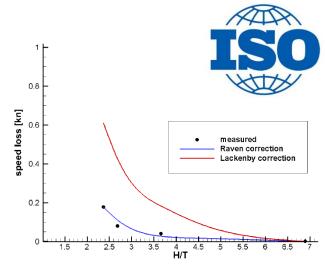
Draft ISO15016-2ndDIS 05March2024



ISO WG17: updating ISO15016

- Waves:
 - STAWAVE-2 replaced by SNNM for trials with ship motions
- Wind:
 - Use of 3D ultrasonic anemometer endorsed
 - Use of wind LiDAR recommended
 - New limits for wind speed (anemo type dependent)
 - Height conversion: using 1/9 power curve for boundary layer (prev. 1/7)
 - 5 new ship types added to wind coefficient database

ISO15016 wind limits



ISO WG17: updating ISO15016

MARIN

Shallow water: Raven method

- Run direction: into waves <u>or wind</u>, whichever has most dominant effect
- When using MoM: may change run direction for new power setting if weather direction changes significantly
- Run order: from low to high power settings mandatory

Questions?

STA-2 Scope

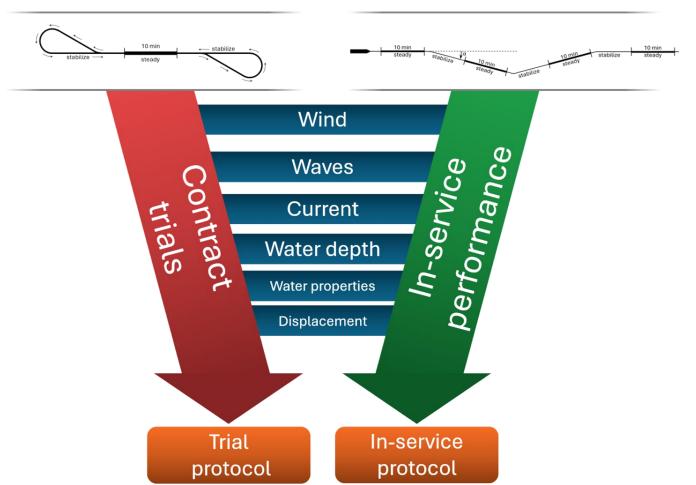
Joint Industry Project

Objective:

The STA-2 JIP aims for more accurate and reliable determination of the actual, full-scale speed/power performance of ships, both from speed trials and in-service measurements.

Objective:

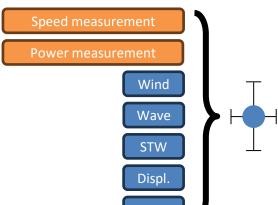
The STA-2 JIP aims for more accurate and reliable determination of the actual, full-scale speed/power performance of ships, both from speed trials and in-service measurements.

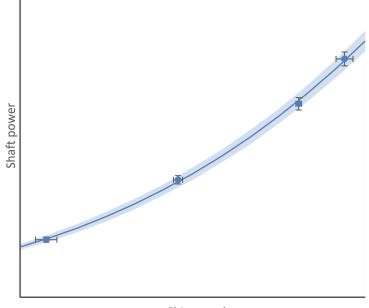


Thereto, the project will:

- Improve the current protocol for speed/power trials
- Develop an in-service performance protocol

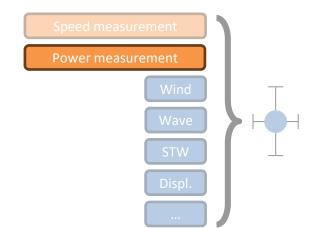
Scope


- WP1 Aspects of uncertainty
- WP2 Correction method (wind, waves, current, ...)
- WP3 Test protocols (contract trials, in-service)
- WP4 Validation trial campaigns
- WP5 Procedures, implementation, dissemination



WP1 Aspects of uncertainty

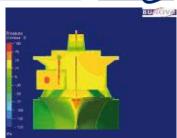
- Study and review all aspects of conduct & analysis, and their contributions to the total uncertainty
- Starting point for defining priorities
- Determine feasibility of standardised uncertainty method



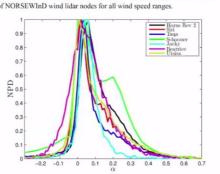
WP1 Aspects of uncertainty - additional

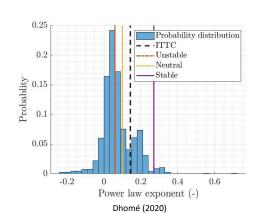
MARIN

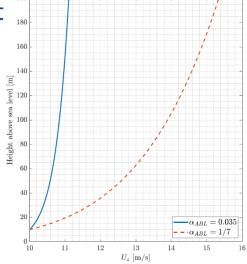
- Power measurements on integrated propulsion systems
- Electrical power measurements, recommended procedure



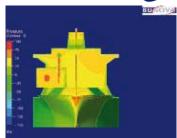
Wind


- Add ship types to coefficients database
- <1.0 <1.0 <1.0 Moat (2003)



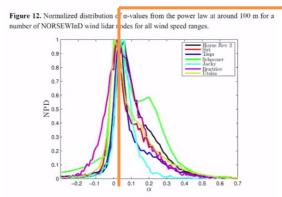

STA

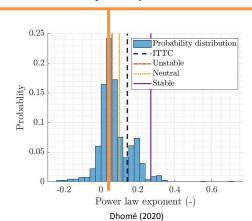
- Investigate anemometer location & CFD pre-scan techniques
- Investigate boundary layer profile steepness/exponent
- (Investigate measurement techniques)

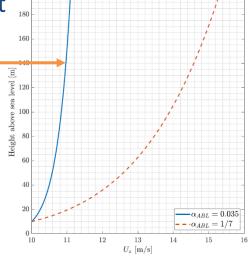


Wind

- Add ship types to coefficients database
- H (2003)

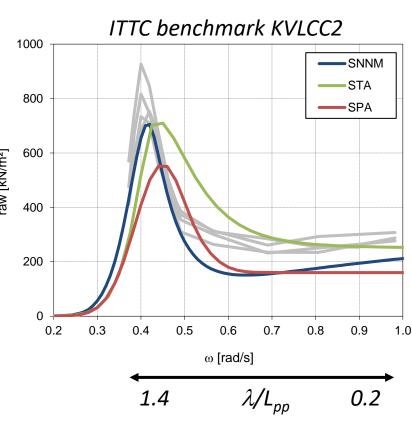



 Investigate anemometer location & CFD pre-scan techniques


STA

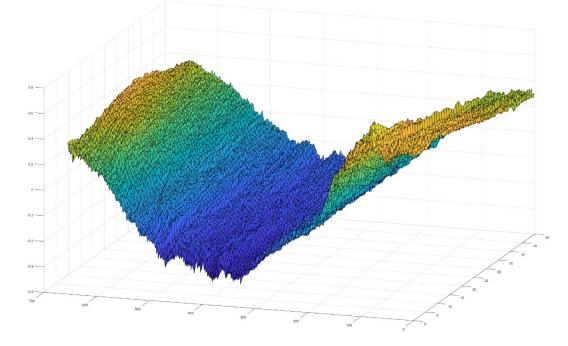
Investigate boundary layer profile steepness/exponent

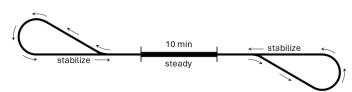
(Investigate measurement techniques)

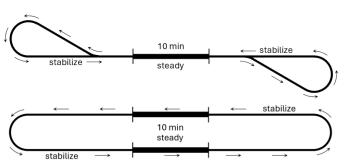

Hasager et al. (2013)

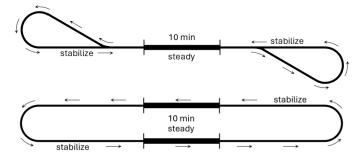
- Waves
 - Review existing methods
 - Investigate short-wave treatment
 - Joint development of improved method Validation

 - (Investigate measurement techniques)




- Current / speed through water (STW)
 - Revise iterative method for current
 - Validation trials to include ADCP (or equivalent ground truth)


- Contract protocol
 - Based on reciprocal runs
 - Determine if can be made easier: tolerance on the need to return to track
 - Review limits (tied to correction methods & uncertainty)
 - Improve wording & definitions


- Contract protocol
 - Based on reciprocal runs
 - Determine if can be made easier: tolerance on the need to return to track
 - Review limits (tied to correction methods & uncertainty)
 - Improve wording & definitions

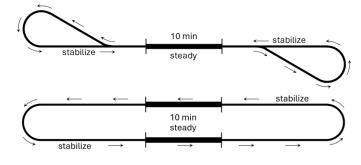
- Contract protocol
 - Based on reciprocal runs
 - Determine if can be made easier: tolerance on the need to return to track
 - Review limits (tied to correction methods & uncertainty)
 - Improve wording & definitions {

Stabilisation period

Stabilisation criteria

SOG/speed made good

Draught reading, displ. calc.


..

- Contract protocol
 - Based on reciprocal runs
 - Determine if can be made easier: tolerance on the need to return to track
 - Review limits (tied to correction methods & uncertainty)

 Stabilisation period
 - Improve wording & definitions

Stabilisation criteria
SOG/speed made good
Draught reading, displ. calc.

In-service protocol

- Steady-state zig-zag runs
- Investigate limits of applicability
- Draft a workable protocol

WP4 Validation trial campaigns

- Different validation trials foreseen to
 - Verify practicalities
 - Verify applicability limits
 - Validate new approaches
 - Validate new models

WP5 Procedures, implementation, dissemination

- Write new procedures, fit for adaptation in ITTC, ISO, IMO,...
 - Contract speed/power trials
 - In-service performance
- Updated software (STAIMO)
- Best practices documents

- Liaise with ITTC, ISO, IMO
- Publications
- Presentations

Impact

New software for analysis

STAIMO

- Leading to updated standards, adaptation in
 - ITTC
 - IMO
 - ISO
 - ISO15016 (speed/power trials)
 - ISO19030 (in-service)

Budget

- 20 participants + MARIN
- 3 years, 15 k€/year
- 25% subsidy (NL)

	Description	Costs	
	•	(k€)	
WP1	Uncertainty study	75	6%
WP2	Correction methods	285	23%
WP3	Test protocols	100	8%
WP4	Validation trials	300	24%
WP5	Procedures, implementation, dissemination	195	1 5%
	Management	140	11%
	Contingency	164	13%
	Total	1259	

Description	Description					
Description	Description					
MARIN contrib	MARIN contribution					
Subsidy Dutch	314					
Participant co	ntribution (20 participants x 3 yr x 15 k€)	900				
Total						

Planning

		2025			2026				2027				
WP		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
	Start-up phase												
WP1	Uncertainty study												
WP2	Correction methods												
WP3	Test protocols												
WP4	Validation trials												
WP5	Procedures, implementation, dissemination												
	Management												

Organization

The STA-2 JIP is organized by MARIN and hosted within the <u>Vessel Operator</u> Forum.

The project will be managed by MARIN. Participants are expected to actively contribute to the project meetings. Two meetings will be arranged each year.

Project kick-off at next meeting during VOF in April 2025 / part of Blue week 2025 (7-11 April).

The full results of the JIP will remain for exclusive use by the JIP participants for three years after the finishing of this project.

Registration

Participants are encouraged to sign up for this project between 1 December 2024 - 1 March 2025.

The full JIP proposal and JIP agreement will be published on https://www.marin.nl/en/jips/sta-2

After 1 October 2025, new participants will be regarded as 'late' participants which involves a 25% addition to the fee.

Acquisition and Promotion

- Website MARIN
 - Project proposal
 - Leaflet
 - List of participants that have signed
- Behind login:
 - Reports
 - Presentations
 - Meeting notes
- LinkedIn page:
 - Announcements of new participants
 - General updates on work
 - General results and progress
 - *Etc.*
- MARIN Report

Questions?

Gijs Struijk G.D.Struijk@marin.nl Rob Grin R.Grin@marin.nl